If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3w^2+w-80=0
a = 3; b = 1; c = -80;
Δ = b2-4ac
Δ = 12-4·3·(-80)
Δ = 961
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{961}=31$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-31}{2*3}=\frac{-32}{6} =-5+1/3 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+31}{2*3}=\frac{30}{6} =5 $
| F(x)=4^x | | -22-3d=-2d | | 12+6x/3=5-9/2 | | 32f-9=-1 | | 4b+8=6b−44b+8=6b−4. | | 2/3(5x+3)=5x+2 | | 28=2h–18 | | F(x)=12500(1.061208) | | 1/3(2x+6)-9=6-4/3x+8 | | x=5,59 | | –2y+1=y–5 | | X=78x | | 3.3(x-8-x=1.2 | | 24-3n=3 | | 12–3m=18 | | 5.59=1.3x | | -24=4(k+6 | | (5x+9)(8x-9)=0 | | 9(9+4x)=8(4x+2) | | (2r=6)-12 | | x=-10=3x | | 5×x=12 | | x+3x+4(3x)=320 | | 480,000=288k | | p/3-6=15 | | 7(2x+9)=-35 | | -4(-3x-8)=152 | | -3/4(8x-12)-|21-30|=-2x | | 4m+2=11 | | x+4=(x-2) | | -4u+20=8(u-2) | | 32-p=5 |